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An analysis is made of the effects on the diffusion of Brownian particles whose Knudsen 
number is large compared to unity, of nonuniformities in the host gas. As examples, 
in one type of nonuniformity of the host gas, the Chapman-Enskog velocity distribution 
function for the gas molecules is used; in the other, the host gas is a free-molecule 
Couette flow. In both cases, a new force on the Brownian particles appears. Two 
techniques are used (extending Kramers' method and utilizing the Chapman-Enskog 
method) to transform the new Fokker-Planck equation into generalized Smoluchowski 
and convective diffusion equations. In these equations, the diffusion coefficient appears 
as a second-order tensor. Thus, it is demonstrated that Brownian diffusion in a non- 
uniform gas is anisotropic. 

KEY WORDS: Anisotropic Brownian motion; convective diffusion; stressphoresis; 
kinetic theory; stochastic processes; nonequilibrium transport phenomena. 

1. I N T R O D U C T I O N  

In  most  practical  applications o f  the convective diffusion equat ion involving Brownian  

particles, the host  fluid is not  in equil ibrium. Yet  it is t radi t ional  to use Einstein 's  

diffusion coefficient in this equat ion.  However ,  Einstein 's  m and most  subsequent  

derivat ions Cz-6~ of  the diffusion coefficient are based on the assumption that  the host  

fluid is in the rmodynamic  equilibrium. The purpose  o f  this repor t  is to describe our  

recent  investigations (7-9~ into the effects o f  nonuniformit ies  in the host  gas on 

Brownian diffusion. 

A number  o f  studies have been made  on the mean mot ion ,  as opposed to the 
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diffusion, of Brownian particles (B particles) in a nonuniform gas. Such studies have 
illuminated, for example, the thermopheresis and diffusiophoresis phenomena. The 
recent review article by Waldmann and Schmitt I~~ contains many references. An 
early reference which has been overlooked and which contains an indication of what 
we shall call stressphoresis (Section 3) is the paper by Bell and Schaaf. m) 

In addition, there have been a few analyses of Brownian diffusion in a nonequi- 
librium environment. Recently, Mazo Ix2) has extended the methods of Lebowitz and 
Resibois and their associates, and has analyzed the motion of a B particle of arbirtary 
size in a nonequilibrium environment. Although his method is more general than ours, 
his results are not so explicit. Further comments on his results will be made later in 
this paper. Zubarev and Bashkirov ~13) have also recently studied Brownian motion 
in a nonuniform system but their major concern was with fluids in which there exists 
temperature gradient. It will be seen below that, although temperature gradients can 
significantly influence the mean motion of the particles, velocity gradients are more 
significant to the particles' diffusion. 

The method which is used in this paper is a slight generalization (8) of  Chandra- 
sekhar's presentation (6) of Markov's method, a~) The use of Markov's method 
restricts our analysis to the case of B particles whose Knudsen number is large com- 
pared to unity. After describing the method in Section 2, it will be applied to the 
motion of a B-particle in a Chapman-Enskog host gas in Section 3 and in a free- 
molecule Couette flow in Section 4. The appropriate Fokker-Planck equation is 
discussed in Section 5, and in the following sections, the new convective-diffusion 
equation is derived. Throughout this report, interactions between B particles are 
ignored and, for simplicity, only spherical particles are considered. 

2. H A R K O V ' S  M E T H O D  

Newton's second law will be used as the basis for our description of the motion 
of a B particle in a nonuniform gas. Thus, if the particle has mass M and velocity V, 
then 

F = M d V / d t  (1) 

where F is the sum of the forces on the particle arising from impacts by the gas 
molecules. Rather than attempt to determine the statistical properties of F, it is more 
convenient to seek the probability density function (pdf) of the total change in 
momentum, 

P = F A t  : M A V  (2) 

that the B particle incurs during A t. I f  molecule j delivers momentum P5 to the particle 
during A t, then 

N 

P --  Z pJ (3) 
j = l  

where N is the (unknown) total number of molecules that collide with the particle 
during z]t. 
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Markov's method can be used to determine the pdf of P from the pdf's -rj(qj) 
of the variables qj upon which each p~ depends. For example, one of these variables 
upon which pj depends is the velocity of the molecule g. In this case, the pdf  ~-(g) is 
the velocity "distribution function." Unfortunately, Markov's method is restricted 
to the case for which the pj are independent, random variables. Thus, it is necessary 
that the motion of the molecules in the neighborhood of the B particle be independent 
of one another. Consequently, it is required that the Knudsen number of the particle 
(the ratio of the mean free path for the gas molecules, A, to the radius of the particle, a) 
satisfy Kn >~ 1. Similar restrictions permitted Uhlenbeck and Goudsmit to analyze 
the rotational Brownian movement of a mirror suspended on a fine wire in a rarefied 
gas (see Section 12 of Ref. 4). 

Using Markov's result, the pdf for P is 

where 

W(P) = [1/(2~r) 3] f do AN(O) exp(--i0 "P) (4) 

N 

AN(O) = [ I f  dqj rj(qj) exp(i0 �9 pj) (5) 

For the case that the pdf's ~5(q~) are the same for all j, then Eq. (5) becomes 

AN(0) = [ f  dq ,(q) exp(i0 �9 p)]N (6) 

Further, if N is large, then using 

e = h.~lim[1 q- (llh)] ~ and f dq-r(q) = 1 

Eq. (6) becomes 

As(o) = exp[--C(0)] 

where 

(7) 

C(p) = N f dq T(q)[I -- exp(i0 �9 P)] (S) 

This result was indicated by Chandrasekhar I~ in his Eq.[(54). 
I f  the pdf's are sufficiently well behaved so that the central-limit theorem is 

applicable, (15~ then Markov's method can be extend to an even more convenient 
result. Expanding C(o) for small 0 and keeping only the first two terms of the 
expansion leads to 

C(o) = --iv" N<p) + �89 �9 N<pp) " 0 (9) 

where 

~p) = f dq ~-(q) p (IO) 

~pp) = f dq T(q) pp (11) 

82z/~/3-4 
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Substituting Eq. (9) into Eq. (7) and the result into Eq. (4) will lead to the prediction 
that P has a normal distribution with mean given by Eq. (10) and variance related 
to Eq. (11). The well-known restrictions for the central-limit theorem to be valid lead 
to the requirement that the number of events M (which can be estimated to g~4r:a z A t, 
where ~ is the mean number density and ~ is the mean thermal speed of the molecules) 
must satisfy M~/2 >~ 1. In the next two sections, Eqs. (10) and (11) will be evaluated for 
two specific flow fields. 

3. C H A P M A N - E N S K O G  H O S T  G A S  

Since N is the number of molecules that hit the particle during At and since <p> 
is the average momentum delivered by a single molecule, then N(p> is the mean, 
total momentum which is delivered to the B particle during At. Similarly, N(pp> is 
the average amount of the dyadic or second-order tensor, pp. Rather surprisingly, 
in spite of  the considerable number of investigation s into the mean motion of particles 
in a nonuniform gas (see Ref. 10), it appears that even the calculation of N(p> has 
not been performed using the complete Chapman-Enskog velocity distribution 
function. In this section, both N<p> and N(pp> will be evaluated for the case of a 
B particle with large Knudsen number moving in a Chapman-Enskog host gas. 

To simplify the calcualations, an external coordinate system (X', Y', Z') is chosen 
which, in the neighborhood of the particle, diagonalizes the viscous stress tensor T. 
The Chapman-Enskog velocity distribution function is 

where 

and 

in which 

f = f(~ 1 -- 41 (12) 

f(o) : O,/zr)~/2 exp(_TC.  C) 

= �9 c + a l l  - ( 2 / 5 ) 7 c  �9 c ]  q .  c )  

(13) 

(14) 

(15) 

~'i are the principal stresses; q is the heat flux; C is the thermal velocity of the mole- 
cules; p is the pressure; y = m/2kT, where m is the mass of a molecule; k is Boltz- 
mann's constant; and T is the local temperature. 

The Chapmann-Enskog distribution function will now be recast into a more 
convenient form. First, if with respect to the inertial frame (X', u Z'), the velocity 
of a molecule is ~' and the local velocity of the fluid is V (:), then 

C = g' -- V (:) (16) 

Further, if the velocity of the B particle with respect to (X', Y', Z) is V, then the 
velocity of a molecule with respect to the particle is 

~ g :  K ' - - V :  C - - ( V - - V  ( : ) ) :  C - - v  (17) 
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where 

v = (V - V(i)) = (u, v, w) (18) 

is the relative velocity between the particle and the fluid. We expect this velocity to 
be small compared with the thermal speed of the molecules; i.e., 

S = r l / W  <~ 1 (19) 

Finally, expanding Eq. (12) for S ~ 1 leads to 

f = T r - a / 2 e x p ( - g ' g ) [ 1 - 2 g ' s - 2 q . g - 2 q . s -  g ' T ' g - - 2 g - T ' S  

q- 2 g . S g .  T" g q- (4/5)g" gq" g q- (4/5)g" g q ' S  q- (28/5)g "Sq" g 

- ( 8 / s ) ~  . S q .  ~ .  g + o ( s ' ) ]  (20) 

In Eq. (20), velocities are made dimensionless with yl/2 and the quantities x and yl/2l 1 
are made dimensionless with p, but we have retained the same symbols for the 
dimensionless quantities as were used when they possessed dimensions. 

In this report, only the case of specular reflections of the gas molecules from a 
B particle's surface will be considered. Recently, (16) we have reported that even for 
the case of an equilibrium environment, there are some interesting consequences of 
diffuse reflections; for example, the diffusion coefficient can depend on the temperature 
of the particle. Similar phenomena occur in a nonequilibrium environment. However, 
unless the two analyses of uniform and nonuniform gases are presented together (as in 
Ref. 8), the case of diffuse reflections in the nonequilibrium case adds considerable 
complications. 

To calculate N(p} and N(pp}, it is convenient to introduce a coordinate system 
(x, y, z) with origin at an area element at (a, O, go) on the surface of the sphere. Here, 
(a, O, go) are the usual spherical coordinates of a point on the sphere with respect to 
the origin, at the center of the sphere, of a coordinate system (X, Y, Z) .  The basis 
vectors of (x, y, z) are chosen to be (i, ~, f~) -+ (eo,  e| eR). Thus, f~ is perpendicular 
to the area element. 

For specular reflections of the molecules, the momentum delivered to the area 
element A A  = a 2 sin O dO dgo by a single molecule of the gas is (by definition) 

p = 2mg. k k  (21) 

The number of molecules in the gas that will hit A A  during At with velocity g to 
-t- dg is 

~f(~) d~ ( - ~  . f~)AA,~t (22) 

Therefore, the mean momentum delivered to the sphere during A t is 

- -2m~a 2 At  o 0 -~ (23 
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Similarly, N(pp) is given by 

--4m2ffa 2 A t sin 
0 - - c c  - - c o  - - o o  

(24) 

Evaluating these integrals is tedious. The velocity distribution function is given 
by Eq. (20) and it is necessary to use, for example, 

The results are 

f~ = i sin @ cos ~ + l sin (9 sin q5 + I~ cos (9 (25) 

N(p) = --M/3 At[v -- (1/5p)(q -j- T" V)] (26) 

N(pp) = M2fl A t ( k T / M ) [ I  --  ~(v/p)] (27) 

where dimensional quantities have again been used and 

fl = 4~a~mff~/3M (28) 

is Epstein's drag coefficient/17) In Eq. (27), I is the identity (or metric) tensor, 

I = 5i q- lJ § I~I~ (29) 

and a term of order yq  �9 v/5p has been ignored since it is small compared to "r/5p if 
7a/2v is small. 

Equation (26) contains some interesting features. The first term on the right-hand 
side, the drag force, describes the force on the particle which attempts to nullify the 
relative velocity. The second term describes the thermophoresis effect: a specularly 
reflecting B particle with large Knudsen number will drift in the direction of the heat 
flux with drift velocity q/5p. The third term is new and, in analogy to the second, 
might be called "stressphoresis." It has also been obtained, independently, by 
Mazo. {12~ It can be seen that this force predicts, for example, that if the B particle is 
moving more slowly in a shear flow than the local fluid velocity, then the particle will 
drift across the streamlines, with drift velocity v �9 T/5p toward a point in the fluid where 
the relative velocity would be zero. There are some similarities between this force 
and the v • B force of magnetodynarnics; there is also the major difference that, in a 
chapman-Enskog gas, the stressphoresis effect is small. 

In Section 5, Eqs. (26) and (27) will be used to obtain a Fokker-Planck equation. 
However, it might be interesting, now, to present the Langevin equation for the B 
particle. Substituting Eqs. (26) and (27) into Eq. (9) and evaluating Eqs. (8) and (4) 
leads to the result that the motion of the B particle can be described by 

d V / d t  = --/3V. [I -- (v/5p)] + K + a (30) 

where 

K = f~o~ + / 3 ( q / S p )  +/3V~S)  �9 It - -  ( r /Sp) ]  (31)  

in which fie) is any external force per unit mass acting on the particle and A is the 
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stochastic acceleration with zero mean. If  the principal axes are used, then the Ith 
component of the change in velocity 

~+At 

Bz(At) = ( A,(s) ds (32) 

has a pdf  given by 

W(B1) = exp[--BlZ/4(kT/M) fl(A t)(1 3r,/5p)] 
[4rr(k T /M)  fl( At)(1 -- 3~',I5P) ]1/2 

(33) 

When the environment is in equilibrium, that is, when q and v vanish, then Eqs. 
(30)-(33) reduce to the formalism developed by Chandrasekhar. (6) In particular, our 
derived result, Eq. (33), reduces to his postulated Eq. (144). Thereby, it can be 
shown (16) that we have derived the result that, at equilibrium, equipartition of energy 
is a consequence of the dynamics and randomness of the motion, as) 

4. FREE-MOLECULE C O U E T T E  F L O W  

From Eqs. (10) and (11), it is seen that all that is needed to evaluate the mean and 
variance of the stochastic force on a B particle whose Knudsen number is large 
compared to unity, is to know the velocity distribution function for the molecules. 
In the last section, the Chapman-Enskog velocity distribution function was used and 
it was found [see Eq. (33)] that the correction to the result for an equilibrium environ- 
ment was of order Tip. This ratio is necessarily small for the Chapman-Enskog 
expansion technique to be valid. Consequently, it is of interest to study the motion 
of a B particle in a flow in which -c/p could be large and for which the velocity distri- 
bution function is known. Perhaps the simplest such flow is the free-molecule Couette 
flow. 

To describe the velocity distribution for the free-molecule Couette flow, consider 
an inertial coordinate system (X', Y', Z') in which two infinite plates lie parallel to the 
X'  Y'  plane. The distance L along the Z'  axis, between the plates, satisfies A >~ L >~ a. 
The upper plate moves in the positive Y' direction with uniform speed U; the lower 
plate is stationary. With respect to this inertial frame, the velocity distribution 
function for the gas molecules is 

f = fbh(~z,) q- f~[1 -- h(~z,)] (34) 

where the molecules from "below" have the density function 

fo = (y/~r)~/2 exp(--~,~' �9 ~') (35) 

and those from "above" have 

f~ = (~/Tr) a/2 exp[--~(~' -- UJ) 2] (36) 

Here, y = m/2kT,  where T is the common temperature of the plates. The h functions 
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are Heaviside step functions and g' is the velocity of a molecule with respect to 
(X', Y', Z'). 

As in the previous section, we choose a second coordinate system (X, Y, Z) with 
origin at the center of the sphere. If  a molecule's velocity with respect to the B particle 
is ~, then 

g' = g -I-, V (37) 

where V is the velocity of the particle with respect to (X, Y, Z'). 
There are two aspects of this analysis which limit the usefulness of the results. 

First, what might be called a shadow effect has been ignored. That is, when the particle 
approaches within a few radii of one of the plates, it seems that there would be fewer 
molecules hitting the particle on its "near-plate" side, because of the "shadow" that 
the particle casts. By ignoring this effect, we restrict the analysis to the motion in the 
region beyong a few particle radii from the wall. Of more important consequence, 
though, is that we were unable to evaluate some integrals, such as 

f2 erf()t~) exp(--~ 2) d~ 

This forced us to abandon the attempt to obtain a result which was valid for all 
"rip. Instead, the analysis is adequate only to terms linear in rip. 

Substituting Eq. (37) into (35) and (36) and expanding the Heaviside functions 
for small (dimensionless) V according to 

h(~z + Vz) = h(~z) + Vz 3(~z) + O(V~ 2) (38) 

where S is the Dirac delta function, and performing the many integrals as in Eqs. (23) 
and (24), leads to 

[ v - - ~ U ^  g9]-~15 , V l + ~ , ,  "~] (39) N(p> ~ m ~  ~ t 

N(pp> = M2fl At k T  [I -- 15 T] 
-M- l~gpJ (40) 

Here, the viscous stress tensor has been identified as ag~ 

v = �89 4:- ~i)  (41) 

In Eq. (39), terms with U 2 and U a could be displayed but since they contribute only 
to the mean force and not to the variance, they have been omitted. Eqs. (39) and (40) 
differ from Eqs. (26) and (27) only by numerical factors. In the sequel, the Chapman- 
Enskog case will be developed and the Couette flow results just stated. 

5. FOKKER-PLANCK E Q U A T I O N  

If  we assume that the Brownian motion of a particle in a slightly nonuniform gas 
is Markovian, then a Fokker-Planck equation can be used to describe the particle's 
evolution in position R and velocity V phase space. To obtain this equation, let 
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~(R, V; AR, AV) AR AV be the transition probability that, during At, the position 
of the particle changes by AR and its velocity by AV. Since its position is certain to 
change by V At, then, from Eqs. (26) and (27), 

where 

~r exp(-- ] A VI -- (A VI)[2/2(A Via)) 7I 3(AR V At) 
i=111 (2~r(A V12))l/2 

<AV,>/At = f l e ) +  ( / 3 / 5 p ) q , - / 3 1 1  - -  ( , d 5 p ) l [ V i -  VJf)l 

(A V12}/At = (2kT/M) 1311 - -  (3rd5p)  ] 

(42) 

(43) 

(44) 

in which, again, I labels the components of the appropriate tensors along the principal 
axes. 

Further, to obtain the Fokker-Planck equation, let W(R, V, t; Ro, Vo, to)dR dV 
be the probability that the B particle is in the volume element of phase space dRdV 
about R, V at time t, if it were known to be at Ro, Vo at time to �9 If the motion of 
the particle in phase space is Markovian, then the pdf W satisfies the Chapman- 
Kolmogorov equation 

W(R, V, t 4- At) = f d(AR) f d(AV) W(R -- AR, V -- AV, t) 

�9 hV(R - -  A R ,  V - -  A V ;  A R ,  Au (45) 

As in Chandrasekhar's article, (6) expanding all quantities in Taylor series about the 
values that they assume at R, V, t and utilizing Eq. (42), the resultant Fokker-Planck 
equation is 

~W/~t 4- V" VRW4- K" V v W =  - - ( 7 v ' K ) W  4- Vv" ([3" VW) + Vv" (Dr" VvW) 

where 

K = f(e) 4- ~q/5p @ ~" V (f) 

= / 3 [ I  - r/Sp] 

Dv = (~T/M)5[J - 3r/5p] 

is the diffusion coefficient in velocity space. 

(46) 

(47) 

(48) 

(49) 

Chandrasekhar (2~ has kindly provided us with the useful observation that this 
method of obtaining the Fokker-Planck equation, whereby C(p) was approximated 
by its first two terms [cf. Eq. (9)], is all that is required. That is, higher-order moments 
of the distribution could have been calculated but they would not appear in Eq. (46). 
Mazo's (~2) Eq. (22) is similar to Eq. (46) and includes the dependence of the friction 
constant 13 on the gradient of the fluid velocity. Presumably, his formalism could be 
developed so that the explicit dependence of [3 on V(f) could be calculated for specific 
flow fields such as in Eq. (48). 
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Consider now the simple case that during the time interval of interest, the B 
particle remains within a sufficiently small region so that V~ W may be ignored and 
the coordinate R appears only as a parameter. In addition suppose that f(e) is a 
constant and that V (f) and q are independent of time. Then, Eq. (46) becomes 

~ W / a t  + ( k  - -  [3" V)" V v W =  3 /3W+ Vv.  (Dv" VvW) (50) 

To solve this equation, subject to the initial condition 

W(V, t -+ 0) = 3(V -- Vo) (51) 

the coordinate system in velocity space is rotated to diagonalize Dv.  A simple 
extension of Chandrasekhar's Lemma II [his equations (236)-(268)] yields the solution 

W(V, t ) =  f l  12~ k T  (1 2TI ] ( 1 -  e-~es')l-z/2 
I=1 M -  - -  51) ] 

expil --IV1 -- (Vo)l e - ~ I ~ -  (Ki / f i l ) (1  - -  e-,it)]2 X (52) 

where 

~, = /3 (1  - .~,/5p) (53) 

An interesting prediction from Eq. (52) is that, for t >~/3-1 and to terms of first 
order in gradients, the B particle will drift with a mean velocity given by 

1 1 f(e). T (54) ( v )  = f(e) + v(f) + 3} q + /3 3~ 

It is hoped that the prediction of this new drift velocity, the last term in Eq. (54), 
would be tested experimentally. 

6. K R A M E R S '  M E T H O D  

From Eq. (52), it is seen that after a time interval of order /3 -1, the velocity 
distribution function for the B particle approaches a constant, skewed Maxwellian, 
locally. If  the details of this relaxation are not of interest, that is, if the smallest time 
interval of interest is very much larger than /3 -1, then under certain conditions, a 
simpler description of the motion of the B particle can be obtained by eliminating the 
velocity distribution function from consideration. Thereby, an equation, the 
Smoluchowski-Kramers equation, is obtained which describes the particle's motion 
only in configuration space. Let w(R, t; R0, to) dR be the probability that the B particle 
is located in dR about R at time t if it were known to be at R 0 at time to �9 Thus, 

w(R, t; Ro, to) = f dVo f dV W(R, V, t; R o , Vo, to)f(Vo) (55) 

where f(V0) describes the distribution of initial velocities that the particle might 
possess. What is sought is an equation for w(R, t). 
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The resultant equation, obtained intuitively by Smoluchowski, can be derived 
in at least two ways. In our original investigation, (s) we appropriately extended 
Kramers' method Czll to the case of a nonuniform gas. Thus, it is found (as in 
Chandrasekhar's section II-5 for the case of constant/3, D, and K) to be convenient 
to recast the Fokker-Planck equation (46) into the equivalent form 

aW a 1 a aW + ~W + W a K W  
at -- /31 ( ~  /31 ar )[Wu -~-/3101 ~ 01 aF ~i -~F (/3101) ~ i ]  

a [ D I a W 4 -  W a  K W  
+ ~ a-7- /31 ~-i-~r (/3101) ] (56) 

where, for simplicity, only one-dimensional (r, u) motion of the B particle along one 
of the principal axes is considered. In Eq. (56), 

K = f i e ,  + 15(q/5p) + filu(~) (57) 

is assumed to be independent of u and 

DI : Dv/f i i  2 = D[1 -- 0-1/5p)] (58) 

where D is Einstein's diffusion coefficient and u (I) is the fluid velocity. 
During the time of order/~-1 that the velocity distribution function for the B 

particle relaxes to its steady value, locally, the mean motion of the particle is governed 
by 

du/dt  = - - N u  -1- K (59) 

Again, if the local values of fil and K suffice for the time interval and displacement of 
interest, then the trajectory of this mean motion is given by 

r + u~-[ 1 - -  K t f i i  1 = const --= (60) 

Now, if Eq. (56) is integrated over all u, along the trajectory ~ = const, then as in 
Chandrasekhar's article, one can obtain that 

_ g_w  
Dw a DI ~ -1- (/3,D,) -- (61) 
at ar ~ ar 

In an arbitrary coordinate system, Eq. (61) is the generalized Smoluchowski- 
Kramers equation 

aw 
- -  V- [D �9 Vw -- wve] (62) 

at 

where 

q f(e) . ( l +  T ) + D ( 2  V VT (63) 



302 W . G . N .  Slinn and S. F. Shen 

and in which the diffusion coefficient appears as the second-order tensor 

D = D[I -- (r/Sp)] (64) 

7. T H E  C H A P H A N - E N S K O G  H E T H O D  

We are grateful to Mazo (22) for calling to our attention an alternative derivation 
of the Smoluchowski-Kramers equation from the Fokker-Planck equation. The 
essence of the method is described by Lebowitz et aL, (2~) but the thorough treatment 
by Resibois (24) is recommended for reference, especially because of  his more careful 
treatment of the collisional invariants. In this method, a Champan-Enskog type of 
perturbation solution to the Fokker-Planck equation is sought. 

For convenience, we return to the principal axes notation and write the Fokker-  
Planck equation in the form 

where 

~[- -~- ~/i -~F/ = ]~1 ~t/~" m ~b/i )] (65) 

Ci = Ui - -  ( K i / ~ l )  = ui  - -  u i  (66) 

kTz*/M = (kT/M)[1 -- (2~-z/5p)] (67) 

and capital-letter indices are not to be summed. It is easy to see (~5) that our collisional 
operator [the RHS of Eq. (65)] conserves "numbers of partMes." Thus, integration 
Eq. (65) over all velocities, we obtain 

ew/Ot = -(e/or3 [f . i w  du] (68) 

which already has the appearance of a diffusion equation. It is necessary now to obtain 
W so that the RHS of Eq. (68) can be evaluated. 

To this end, following Resibois, we seek a solution to Eq. (65) in the form 

w = w (~ + ~ - I w  (~) + o(~-~) (69) 

Substituting Eq. (69) into (65), and equating coefficients which have the same 
power of fi-1, it is found that W (~ is given by Eq. (52) with t --+ oe; that is, the skewed 
Maxwellian. Further, the equation for W (1) is 

k Tr* ~ W (~) 
~---~-- @ Hi o r i  - -  5-p ~ M Ou~ 

Fortunately, it is not necessary to solve Eq. (70) since, from Eq. (68), 

= + + l 
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Thus, to O(fl-z), we need determine only 

f ui W (1) du (72) 

The first integral in Eq. (71) is simply ui �9 
Expression (72) can be obtained directly from Eq. (70). First, however, we make 

the fundamental, Chapman-Enskog-type assumption that for time intervals large 
compared to f i-1 then the time dependence of  W (~ is implicit in the time dependence 
of w (customarily, the density) and in the temperature T, etc. Thus, we assume that 

_ _  = _ _  OW (~ OT OW (~ av} ~) aW (~ af} e) aW (~ aW (~ a w § _ _  + - -  + - -  ~- "" (73) 
at aw at aT at av~ f) at af~ e) at 

in which some terms (e.g., @/at, aql/at) have been ignored since they lead to quantities 
which are of second order in gradients of  fluid properties. Substituting Eq. (73) into 
(70), multiplying through by u~, and integrating over u leads to 

-;) 
-b-/- + w a--t- a-T 

q- w av(kfl au, + a ( uiujW(O) du] (74) 
at av;r) ~ J 

Evaluating the terms in Eq. (74) and substituting the results into Eq. (71) yields 

awat -- V . [ [ ) . V w - - w u ] + ~  1 + ~  Or, M 

+ f i -  -b-~-i + ~ + -fi - a---/--] t (75) 

At first glance it appears, that additional terms appear in this expression over those 
which were obtained in Eq. (62) via Kramers' method. However, the last three terms 
in Eq. (75) correspond to changes that occur during a time interval O(fl-z). These 
were specifically excluded in Kramers' method and, in fact, should be ignored here 
since if these properties change significantly during fi-~, then the Chapman-Enskog 
procedure is invalid. Thus, it is seen that the two methods yield essentially the same 
result. 

8. T H E  C O N V E C T I V E - D I F F U S I O N  E Q U A T I O N  

If  there is a number density N of noninteracting B particles in the fluid and if 
the initial location of these particles is not known with certainty, then it is convenient 
to recast Eq. (62) or (75) into a convective-diffusion equation. Since 

N(R, t) ---- f dRo w(R, t; Ro, to) N(Ro, t) (76) 
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then operating on Eq. (62) with the operator  in Eq. (76), and utilizing Eq. (62), yields (26) 

eN/~t = V �9 [D �9 V N -  Nva] (77) 

where va and D are given by Eqs. (63) and (64), respectively. 
For  practical purposes, Eq. (77) is the main result of  this analysis. I t  describes 

the influence on Brownian diffusion of  nonuniformities in the host  gas. The tensorial 
character o f  the diffusion coefficient implies that  in a flow in which there exist viscous 
stresses, B particles do not  diffuse spherically symmetrically about  the mean posit ion 
dicated by va �9 Surfaces o f  constant  density, instead o f  spherical, are ellipsoidal. The 
principal axes of  these ellipsoids coincide with the principal axes that  diagonalize the 
viscous stress tensor. 

Actually, this result might  have been expected on the basis of  Curie's theorem. (2v) 
That  is, if  Brownian diffusion is dependent on nonuniformities in the host gas, then 
to first order in gradients, the only measure o f  the nonuniformities which is an even- 
order  tensor is the viscous stress. The major  result o f  this analysis has been to 
predict  the "proport ional i ty  constant"  between the diffusion coefficient and the 
stress tensor. In  summary,  for  a particle with large Knudsen number,  the results are 

D = D[I - -  (ev/p)] (78) 

where cr = 1/5 for a C h a p m a n - E n s k o g  host gas and e = 195~/512 for a free- 
molecule Couette flow. Al though these corrections are small in most  applications, 
the parameter  Tip can be large in low-density gas motion.  
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